arXiv:2601.20193v1 Announce Type: cross
Abstract: Robust reinforcement learning methods typically focus on suppressing unreliable experiences or corrupted rewards, but they lack the ability to reason about the reliability of their own learning process. As a result, such methods often either overreact to noise by becoming overly conservative or fail catastrophically when uncertainty accumulates.
In this work, we propose a meta-cognitive reinforcement learning framework that enables an agent to assess, regulate, and recover its learning behavior based on internally estimated reliability signals. The proposed method introduces a meta-trust variable driven by Value Prediction Error Stability (VPES), which modulates learning dynamics via fail-safe regulation and gradual trust recovery.
Experiments on continuous-control benchmarks with reward corruption demonstrate that recovery-enabled meta-cognitive control achieves higher average returns and significantly reduces late-stage training failures compared to strong robustness baselines.

Subscribe for Updates

Copyright 2025 dijee Intelligence Ltd.   dijee Intelligence Ltd. is a private limited company registered in England and Wales at Media House, Sopers Road, Cuffley, Hertfordshire, EN6 4RY, UK registeration number 16808844