• Home
  • Uncategorized
  • MobileCity: An Efficient Framework for Large-Scale Urban Behavior Simulation

arXiv:2504.16946v4 Announce Type: replace-cross
Abstract: Generative agents offer promising capabilities for simulating realistic urban behaviors. However, existing methods oversimplify transportation choices, rely heavily on static agent profiles leading to behavioral homogenization, and inherit prohibitive computational costs. To address these limitations, we present MobileCity, a lightweight simulation platform designed to model realistic urban mobility with high computational efficiency. We introduce a comprehensive transportation system with multiple transport modes, and collect questionnaire data from respondents to construct agent profiles. To enable scalable simulation, agents perform action selection within a pre-generated action space and uses local models for efficient agent memory generation. Through extensive micro and macro-level evaluations on 4,000 agents, we demonstrate that MobileCity generates more realistic urban behaviors than baselines while maintaining computational efficiency. We further explore practical applications such as predicting movement patterns and analyzing demographic trends in transportation preferences. Our code is publicly available at https://github.com/Tony-Yip/MobileCity.

Subscribe for Updates

Copyright 2025 dijee Intelligence Ltd.   dijee Intelligence Ltd. is a private limited company registered in England and Wales at Media House, Sopers Road, Cuffley, Hertfordshire, EN6 4RY, UK registeration number 16808844