arXiv:2512.19909v1 Announce Type: cross
Abstract: Recent developments in non-ergodic ground-motion models (GMMs) explicitly model systematic spatial variations in source, site, and path effects, reducing standard deviation to 30-40% of ergodic models and enabling more accurate site-specific seismic hazard analysis. Current non-ergodic GMMs rely on Gaussian Process (GP) methods with prescribed correlation functions and thus have computational limitations for large-scale predictions. This study proposes a deep-learning approach called Conditional Generative Modeling for Fourier Amplitude Spectra (CGM-FAS) as an alternative to GP-based methods for modeling non-ergodic path effects in Fourier Amplitude Spectra (FAS). CGM-FAS uses a Conditional Variational Autoencoder architecture to learn spatial patterns and interfrequency correlation directly from data by using geographical coordinates of earthquakes and stations as conditional variables. Using San Francisco Bay Area earthquake data, we compare CGM-FAS against a recent GP-based GMM for the region and demonstrate consistent predictions of non-ergodic path effects. Additionally, CGM-FAS offers advantages compared to GP-based approaches in learning spatial patterns without prescribed correlation functions, capturing interfrequency correlations, and enabling rapid predictions, generating maps for 10,000 sites across 1,000 frequencies within 10 seconds using a few GB of memory. CGM-FAS hyperparameters can be tuned to ensure generated path effects exhibit variability consistent with the GP-based empirical GMM. This work demonstrates a promising direction for efficient non-ergodic ground-motion prediction across multiple frequencies and large spatial domains.
Learning Evolving Latent Strategies for Multi-Agent Language Systems without Model Fine-Tuning
arXiv:2512.20629v1 Announce Type: cross Abstract: This study proposes a multi-agent language framework that enables continual strategy evolution without fine-tuning the language model’s parameters. The core




