• Home
  • Uncategorized
  • MPCI-Bench: A Benchmark for Multimodal Pairwise Contextual Integrity Evaluation of Language Model Agents

arXiv:2601.08235v3 Announce Type: replace
Abstract: As language-model agents evolve from passive chatbots into proactive assistants that handle personal data, evaluating their adherence to social norms becomes increasingly critical, often through the lens of Contextual Integrity (CI). However, existing CI benchmarks are largely text-centric and primarily emphasize negative refusal scenarios, overlooking multimodal privacy risks and the fundamental trade-off between privacy and utility. In this paper, we introduce MPCI-Bench, the first Multimodal Pairwise Contextual Integrity benchmark for evaluating privacy behavior in agentic settings. MPCI-Bench consists of paired positive and negative instances derived from the same visual source and instantiated across three tiers: normative Seed judgments, context-rich Story reasoning, and executable agent action Traces. Data quality is ensured through a Tri-Principle Iterative Refinement pipeline. Evaluations of state-of-the-art multimodal models reveal systematic failures to balance privacy and utility and a pronounced modality leakage gap, where sensitive visual information is leaked more frequently than textual information. We will open-source MPCI-Bench to facilitate future research on agentic CI.

Subscribe for Updates

Copyright 2025 dijee Intelligence Ltd.   dijee Intelligence Ltd. is a private limited company registered in England and Wales at Media House, Sopers Road, Cuffley, Hertfordshire, EN6 4RY, UK registeration number 16808844