arXiv:2511.20663v4 Announce Type: replace-cross
Abstract: Reliability in multi-agent systems (MAS) built on large language models is increasingly limited by cognitive failures rather than infrastructure faults. Existing observability tools describe failures but do not quantify how quickly distributed reasoning recovers once coherence is lost. We introduce MTTR-A (Mean Time-to-Recovery for Agentic Systems), a runtime reliability metric that measures cognitive recovery latency in MAS. MTTR-A adapts classical dependability theory to agentic orchestration, capturing the time required to detect reasoning drift and restore coherent operation. We further define complementary metrics, including MTBF and a normalized recovery ratio (NRR), and establish theoretical bounds linking recovery latency to long-run cognitive uptime. Using a LangGraph-based benchmark with simulated drift and reflex recovery, we empirically demonstrate measurable recovery behavior across multiple reflex strategies. This work establishes a quantitative foundation for runtime cognitive dependability in distributed agentic systems.
Just-In-Time Adaptive Interventions for Weight Management Among Adults With Excess Body Weight: Scoping Review
Background: Just-in-time adaptive interventions (JITAIs) use real-time monitoring to deliver personalized support at optimal moments, demonstrating potential for improving lifestyle behaviors in weight management. Objective:




