arXiv:2509.12146v2 Announce Type: replace-cross
Abstract: X-ray imaging is a ubiquitous in radiology, yet most existing AI foundation models are limited to chest anatomy and fail to generalize across broader clinical tasks. In this work, we introduce XR-0, the multi-anatomy X-ray foundation model using self-supervised learning on a large, private dataset of 1.15 million images spanning diverse anatomical regions and evaluated across 12 datasets and 20 downstream tasks, including classification, retrieval, segmentation, localization, visual grounding, and report generation. XR-0 achieves state-of-the-art performance on most multi-anatomy tasks and remains competitive on chest-specific benchmarks. Our results demonstrate that anatomical diversity and supervision are critical for building robust, general-purpose medical vision models, paving the way for scalable and adaptable AI systems in radiology.
Learning Evolving Latent Strategies for Multi-Agent Language Systems without Model Fine-Tuning
arXiv:2512.20629v1 Announce Type: cross Abstract: This study proposes a multi-agent language framework that enables continual strategy evolution without fine-tuning the language model’s parameters. The core



