arXiv:2601.19947v1 Announce Type: cross
Abstract: Learning from Noisy Labels (LNL) presents a fundamental challenge in deep learning, as real-world datasets often contain erroneous or corrupted annotations, textite.g., data crawled from Web. Current research focuses on sophisticated label correction mechanisms. In contrast, this paper adopts a novel perspective by establishing a theoretical analysis the relationship between flatness of the loss landscape and the presence of label noise. In this paper, we theoretically demonstrate that carefully simulated label noise synergistically enhances both the generalization performance and robustness of label noises. Consequently, we propose Noise-Compensated Sharpness-aware Minimization (NCSAM) to leverage the perturbation of Sharpness-Aware Minimization (SAM) to remedy the damage of label noises. Our analysis reveals that the testing accuracy exhibits a similar behavior that has been observed on the noise-clear dataset. Extensive experimental results on multiple benchmark datasets demonstrate the consistent superiority of the proposed method over existing state-of-the-art approaches on diverse tasks.
Infectious disease burden and surveillance challenges in Jordan and Palestine: a systematic review and meta-analysis
BackgroundJordan and Palestine face public health challenges due to infectious diseases, with the added detrimental factors of long-term conflict, forced relocation, and lack of resources.



