Dopamine shapes brain metastate dynamics

Dopamine’s influence on large-scale network dynamics, especially on the default mode network (DMN), remains uncertain, as fMRI studies have produced mixed results. One likely contributor

  • Home
  • Uncategorized
  • NEAT: Neighborhood-Guided, Efficient, Autoregressive Set Transformer for 3D Molecular Generation

arXiv:2512.05844v2 Announce Type: replace-cross
Abstract: Transformer-based autoregressive models offer a promising alternative to diffusion- and flow-matching approaches for generating 3D molecular structures. However, standard transformer architectures require a sequential ordering of tokens, which is not uniquely defined for the atoms in a molecule. Prior work has addressed this by using canonical atom orderings, but these do not ensure permutation invariance of atoms, which is essential for tasks like prefix completion. We introduce NEAT, a Neighborhood-guided, Efficient, Autoregressive, Set Transformer that treats molecular graphs as sets of atoms and learns an order-agnostic distribution over admissible tokens at the graph boundary. NEAT achieves state-of-the-art performance in autoregressive 3D molecular generation whilst ensuring atom-level permutation invariance by design.

Subscribe for Updates

Copyright 2025 dijee Intelligence Ltd.   dijee Intelligence Ltd. is a private limited company registered in England and Wales at Media House, Sopers Road, Cuffley, Hertfordshire, EN6 4RY, UK registeration number 16808844