• Home
  • Uncategorized
  • Prefill-Guided Thinking for zero-shot detection of AI-generated images

arXiv:2506.11031v4 Announce Type: replace-cross
Abstract: Traditional supervised methods for detecting AI-generated images depend on large, curated datasets for training and fail to generalize to novel, out-of-domain image generators. As an alternative, we explore pre-trained Vision-Language Models (VLMs) for zero-shot detection of AI-generated images. We evaluate VLM performance on three diverse benchmarks encompassing synthetic images of human faces, objects, and animals produced by 16 different state-of-the-art image generators. While off-the-shelf VLMs perform poorly on these datasets, we find that prefilling responses effectively guides their reasoning — a method we call Prefill-Guided Thinking (PGT). In particular, prefilling a VLM response with the phrase “Let’s examine the style and the synthesis artifacts” improves the Macro F1 scores of three widely used open-source VLMs by up to 24%. We analyze this improvement in detection by tracking answer confidence during response generation. For some models, prefills counteract early overconfidence — akin to mitigating the Dunning-Kruger effect — leading to better detection performance.

Subscribe for Updates

Copyright 2025 dijee Intelligence Ltd.   dijee Intelligence Ltd. is a private limited company registered in England and Wales at Media House, Sopers Road, Cuffley, Hertfordshire, EN6 4RY, UK registeration number 16808844