arXiv:2512.16658v1 Announce Type: cross
Abstract: The rapid proliferation of deep neural networks (DNNs) across several domains has led to increasing concerns regarding intellectual property (IP) protection and model misuse. Trained DNNs represent valuable assets, often developed through significant investments. However, the ease with which models can be copied, redistributed, or repurposed highlights the urgent need for effective mechanisms to assert and verify model ownership. In this work, we propose an efficient and resilient white-box watermarking framework that embeds ownership information into the internal parameters of a DNN using chaotic sequences. The watermark is generated using a logistic map, a well-known chaotic function, producing a sequence that is sensitive to its initialization parameters. This sequence is injected into the weights of a chosen intermediate layer without requiring structural modifications to the model or degradation in predictive performance. To validate ownership, we introduce a verification process based on a genetic algorithm that recovers the original chaotic parameters by optimizing the similarity between the extracted and regenerated sequences. The effectiveness of the proposed approach is demonstrated through extensive experiments on image classification tasks using MNIST and CIFAR-10 datasets. The results show that the embedded watermark remains detectable after fine-tuning, with negligible loss in model accuracy. In addition to numerical recovery of the watermark, we perform visual analyses using weight density plots and construct activation-based classifiers to distinguish between original, watermarked, and tampered models. Overall, the proposed method offers a flexible and scalable solution for embedding and verifying model ownership in white-box settings well-suited for real-world scenarios where IP protection is critical.
Impact of Telerehabilitation on Rehabilitation Efficacy and Patient Satisfaction After Knee Surgery: Systematic Review and Meta-Analysis of Randomized Controlled Trials
Background: Postoperative rehabilitation after knee surgery is crucial for functional recovery, but traditional in-person methods can impose burdens on patients, particularly those with mobility limitations




