arXiv:2601.17360v1 Announce Type: cross
Abstract: Machine learning systems can produce personalized outputs that allow an adversary to infer sensitive input attributes at inference time. We introduce Robust Privacy (RP), an inference-time privacy notion inspired by certified robustness: if a model’s prediction is provably invariant within a radius-$R$ neighborhood around an input $x$ (e.g., under the $ell_2$ norm), then $x$ enjoys $R$-Robust Privacy, i.e., observing the prediction cannot distinguish $x$ from any input within distance $R$ of $x$. We further develop Attribute Privacy Enhancement (APE) to translate input-level invariance into an attribute-level privacy effect. In a controlled recommendation task where the decision depends primarily on a sensitive attribute, we show that RP expands the set of sensitive-attribute values compatible with a positive recommendation, expanding the inference interval accordingly. Finally, we empirically demonstrate that RP also mitigates model inversion attacks (MIAs) by masking fine-grained input-output dependence. Even at small noise levels ($sigma=0.1$), RP reduces the attack success rate (ASR) from 73% to 4% with partial model performance degradation. RP can also partially mitigate MIAs (e.g., ASR drops to 44%) with no model performance degradation.
Infectious disease burden and surveillance challenges in Jordan and Palestine: a systematic review and meta-analysis
BackgroundJordan and Palestine face public health challenges due to infectious diseases, with the added detrimental factors of long-term conflict, forced relocation, and lack of resources.

