arXiv:2509.23694v4 Announce Type: replace
Abstract: Search agents connect LLMs to the Internet, enabling them to access broader and more up-to-date information. However, this also introduces a new threat surface: unreliable search results can mislead agents into producing unsafe outputs. Real-world incidents and our two in-the-wild observations show that such failures can occur in practice. To study this threat systematically, we propose SafeSearch, an automated red-teaming framework that is scalable, cost-efficient, and lightweight, enabling harmless safety evaluation of search agents. Using this, we generate 300 test cases spanning five risk categories (e.g., misinformation and prompt injection) and evaluate three search agent scaffolds across 17 representative LLMs. Our results reveal substantial vulnerabilities in LLM-based search agents, with the highest ASR reaching 90.5% for GPT-4.1-mini in a search-workflow setting. Moreover, we find that common defenses, such as reminder prompting, offer limited protection. Overall, SafeSearch provides a practical way to measure and improve the safety of LLM-based search agents. Our codebase and test cases are publicly available: https://github.com/jianshuod/SafeSearch.

Subscribe for Updates

Copyright 2025 dijee Intelligence Ltd.   dijee Intelligence Ltd. is a private limited company registered in England and Wales at Media House, Sopers Road, Cuffley, Hertfordshire, EN6 4RY, UK registeration number 16808844