• Home
  • Uncategorized
  • SINRL: Socially Integrated Navigation with Reinforcement Learning using Spiking Neural Networks

SINRL: Socially Integrated Navigation with Reinforcement Learning using Spiking Neural Networks

arXiv:2512.07266v1 Announce Type: cross
Abstract: Integrating autonomous mobile robots into human environments requires human-like decision-making and energy-efficient, event-based computation. Despite progress, neuromorphic methods are rarely applied to Deep Reinforcement Learning (DRL) navigation approaches due to unstable training. We address this gap with a hybrid socially integrated DRL actor-critic approach that combines Spiking Neural Networks (SNNs) in the actor with Artificial Neural Networks (ANNs) in the critic and a neuromorphic feature extractor to capture temporal crowd dynamics and human-robot interactions. Our approach enhances social navigation performance and reduces estimated energy consumption by approximately 1.69 orders of magnitude.

Subscribe for Updates

Copyright 2025 dijee Intelligence Ltd.   dijee Intelligence Ltd. is a private limited company registered in England and Wales at Media House, Sopers Road, Cuffley, Hertfordshire, EN6 4RY, UK registeration number 16808844