arXiv:2601.19320v1 Announce Type: cross
Abstract: Quantization-aware training (QAT) is essential for deploying large models under strict memory and latency constraints, yet achieving stable and robust optimization at ultra-low bitwidths remains challenging. Common approaches based on the straight-through estimator (STE) or soft quantizers often suffer from gradient mismatch, instability, or high computational overhead. As such, we propose StableQAT, a unified and efficient QAT framework that stabilizes training in ultra low-bit settings via a novel, lightweight, and theoretically grounded surrogate for backpropagation derived from a discrete Fourier analysis of the rounding operator. StableQAT strictly generalizes STE as the latter arises as a special case of our more expressive surrogate family, yielding smooth, bounded, and inexpensive gradients that improve QAT training performance and stability across various hyperparameter choices. In experiments, StableQAT exhibits stable and efficient QAT at 2-4 bit regimes, demonstrating improved training stability, robustness, and superior performance with negligible training overhead against standard QAT techniques. Our code is available at https://github.com/microsoft/StableQAT.
Infectious disease burden and surveillance challenges in Jordan and Palestine: a systematic review and meta-analysis
BackgroundJordan and Palestine face public health challenges due to infectious diseases, with the added detrimental factors of long-term conflict, forced relocation, and lack of resources.


