• Home
  • Uncategorized
  • Statistically-Guided Dual-Domain Meta-Learning with Adaptive Multi-Prototype Aggregation for Distributed Fiber Optic Sensing

Statistically-Guided Dual-Domain Meta-Learning with Adaptive Multi-Prototype Aggregation for Distributed Fiber Optic Sensing

arXiv:2511.17902v2 Announce Type: replace-cross
Abstract: Distributed Fiber Optic Sensing (DFOS) is promising for long-range perimeter security, yet practical deployment faces three key obstacles: severe cross-deployment domain shift, scarce or unavailable labels at new sites, and limited within-class coverage even in source deployments. We propose DUPLE, a prototype-based meta-learning framework tailored for cross-deployment DFOS recognition. The core idea is to jointly exploit complementary time- and frequency-domain cues and adapt class representations to sample-specific statistics: (i) a dual-domain learner constructs multi-prototype class representations to cover intra-class heterogeneity; (ii) a lightweight statistical guidance mechanism estimates the reliability of each domain from raw signal statistics; and (iii) a query-adaptive aggregation strategy selects and combines the most relevant prototypes for each query. Extensive experiments on two real-world cross-deployment benchmarks demonstrate consistent improvements over strong deep learning and meta-learning baselines, achieving more accurate and stable recognition under label-scarce target deployments.

Subscribe for Updates

Copyright 2025 dijee Intelligence Ltd.   dijee Intelligence Ltd. is a private limited company registered in England and Wales at Media House, Sopers Road, Cuffley, Hertfordshire, EN6 4RY, UK registeration number 16808844