arXiv:2512.09471v1 Announce Type: cross
Abstract: Cloud cover in multispectral imagery (MSI) significantly hinders early-season crop mapping by corrupting spectral information. Existing Vision Transformer(ViT)-based time-series reconstruction methods, like SMTS-ViT, often employ coarse temporal embeddings that aggregate entire sequences, causing substantial information loss and reducing reconstruction accuracy. To address these limitations, a Video Vision Transformer (ViViT)-based framework with temporal-spatial fusion embedding for MSI reconstruction in cloud-covered regions is proposed in this study. Non-overlapping tubelets are extracted via 3D convolution with constrained temporal span $(t=2)$, ensuring local temporal coherence while reducing cross-day information degradation. Both MSI-only and SAR-MSI fusion scenarios are considered during the experiments. Comprehensive experiments on 2020 Traill County data demonstrate notable performance improvements: MTS-ViViT achieves a 2.23% reduction in MSE compared to the MTS-ViT baseline, while SMTS-ViViT achieves a 10.33% improvement with SAR integration over the SMTS-ViT baseline. The proposed framework effectively enhances spectral reconstruction quality for robust agricultural monitoring.
Mucin-type O-glycans regulate proteoglycan stability and chondrocyte maturation
O-glycosylation is a ubiquitous post-translational modification essential for protein stability, cell signaling, and tissue organization, yet how distinct O-glycan subclasses coordinate tissue development remains unclear.




