GFLAN: Generative Functional Layouts

arXiv:2512.16275v1 Announce Type: cross Abstract: Automated floor plan generation lies at the intersection of combinatorial search, geometric constraint satisfaction, and functional design requirements — a

  • Home
  • Uncategorized
  • TOGGLE: Temporal Logic-Guided Large Language Model Compression for Edge

TOGGLE: Temporal Logic-Guided Large Language Model Compression for Edge

arXiv:2512.16855v1 Announce Type: new
Abstract: Large Language Models (LLMs) deliver exceptional performance across natural language tasks but demand substantial computational resources, limiting their deployment on resource-constrained edge devices. Existing compression techniques, such as quantization and pruning, often degrade critical linguistic properties and lack formal guarantees for preserving model behavior. We propose Temporal Logic-Guided Large Language Model Compression (TOGGLE), a novel framework that leverages Signal Temporal Logic (STL) to formally specify and enforce linguistic properties during compression. TOGGLE employs an STL robustness-guided Bayesian optimization to systematically explore layer-wise quantization and pruning configurations, generating compressed models that formally satisfy specified linguistic constraints without retraining or fine-tuning. Evaluating TOGGLE on four LLM architectures (GPT-2, DeepSeek-V2 7B, LLaMA 3 8B, and Mistral 7B), we achieve up to 3.3x reduction in computational costs (FLOPs) and up to a 68.8% reduction in model size while satisfying all linguistic properties. TOGGLE represents the first integration of formal methods into LLM compression, enabling efficient, verifiable deployment of LLMs on edge hardware.

Subscribe for Updates

Copyright 2025 dijee Intelligence Ltd.   dijee Intelligence Ltd. is a private limited company registered in England and Wales at Media House, Sopers Road, Cuffley, Hertfordshire, EN6 4RY, UK registeration number 16808844