arXiv:2601.20301v1 Announce Type: cross
Abstract: Sharpness-Aware Minimization (SAM) has recently emerged as an effective technique for improving DNN robustness to input variations. However, its interplay with the compactness requirements of on-device DNN deployments remains less explored. Simply pruning a SAM-trained model can undermine robustness, since flatness in the continuous parameter space does not necessarily translate to robustness under the discrete structural changes induced by pruning. Conversely, applying SAM after pruning may be fundamentally constrained by architectural limitations imposed by an early, robustness-agnostic pruning pattern. To address this gap, we propose Compression-aware ShArpness Minimization (C-SAM), a framework that shifts sharpness-aware learning from parameter perturbations to mask perturbations. By explicitly perturbing pruning masks during training, C-SAM promotes a flatter loss landscape with respect to model structure, enabling the discovery of pruning patterns that simultaneously optimize model compactness and robustness to input variations. Extensive experiments on CelebA-HQ, Flowers-102, and CIFAR-10-C across ResNet-18, GoogLeNet, and MobileNet-V2 show that C-SAM consistently achieves higher certified robustness than strong baselines, with improvements of up to 42%, while maintaining task accuracy comparable to the corresponding unpruned models.
Infectious disease burden and surveillance challenges in Jordan and Palestine: a systematic review and meta-analysis
BackgroundJordan and Palestine face public health challenges due to infectious diseases, with the added detrimental factors of long-term conflict, forced relocation, and lack of resources.

