arXiv:2508.04945v2 Announce Type: replace-cross
Abstract: Evaluating visual activity recognition systems is challenging due to inherent ambiguities in verb semantics and image interpretation. When describing actions in images, synonymous verbs can refer to the same event (e.g., brushing vs. grooming), while different perspectives can lead to equally valid but distinct verb choices (e.g., piloting vs. operating). Standard exact-match evaluation, which relies on a single gold answer, fails to capture these ambiguities, resulting in an incomplete assessment of model performance. To address this, we propose a vision-language clustering framework that constructs verb sense clusters, providing a more robust evaluation. Our analysis of the imSitu dataset shows that each image maps to around four sense clusters, with each cluster representing a distinct perspective of the image. We evaluate multiple activity recognition models and compare our cluster-based evaluation with standard evaluation methods. Additionally, our human alignment analysis suggests that the cluster-based evaluation better aligns with human judgments, offering a more nuanced assessment of model performance.
Infectious disease burden and surveillance challenges in Jordan and Palestine: a systematic review and meta-analysis
BackgroundJordan and Palestine face public health challenges due to infectious diseases, with the added detrimental factors of long-term conflict, forced relocation, and lack of resources.



