• Home
  • Uncategorized
  • Tracking Drift: Variation-Aware Entropy Scheduling for Non-Stationary Reinforcement Learning

arXiv:2601.19624v1 Announce Type: cross
Abstract: Real-world reinforcement learning often faces environment drift, but most existing methods rely on static entropy coefficients/target entropy, causing over-exploration during stable periods and under-exploration after drift (thus slow recovery), and leaving unanswered the principled question of how exploration intensity should scale with drift magnitude. We prove that entropy scheduling under non-stationarity can be reduced to a one-dimensional, round-by-round trade-off, faster tracking of the optimal solution after drift vs. avoiding gratuitous randomness when the environment is stable, so exploration strength can be driven by measurable online drift signals. Building on this, we propose AES (Adaptive Entropy Scheduling), which adaptively adjusts the entropy coefficient/temperature online using observable drift proxies during training, requiring almost no structural changes and incurring minimal overhead. Across 4 algorithm variants, 12 tasks, and 4 drift modes, AES significantly reduces the fraction of performance degradation caused by drift and accelerates recovery after abrupt changes.

Subscribe for Updates

Copyright 2025 dijee Intelligence Ltd.   dijee Intelligence Ltd. is a private limited company registered in England and Wales at Media House, Sopers Road, Cuffley, Hertfordshire, EN6 4RY, UK registeration number 16808844