• Home
  • Uncategorized
  • Uncertainty-Aware 3D Emotional Talking Face Synthesis with Emotion Prior Distillation

arXiv:2601.19112v1 Announce Type: new
Abstract: Emotional Talking Face synthesis is pivotal in multimedia and signal processing, yet existing 3D methods suffer from two critical challenges: poor audio-vision emotion alignment, manifested as difficult audio emotion extraction and inadequate control over emotional micro-expressions; and a one-size-fits-all multi-view fusion strategy that overlooks uncertainty and feature quality differences, undermining rendering quality. We propose UA-3DTalk, Uncertainty-Aware 3D Emotional Talking Face Synthesis with emotion prior distillation, which has three core modules: the Prior Extraction module disentangles audio into content-synchronized features for alignment and person-specific complementary features for individualization; the Emotion Distillation module introduces a multi-modal attention-weighted fusion mechanism and 4D Gaussian encoding with multi-resolution code-books, enabling fine-grained audio emotion extraction and precise control of emotional micro-expressions; the Uncertainty-based Deformation deploys uncertainty blocks to estimate view-specific aleatoric (input noise) and epistemic (model parameters) uncertainty, realizing adaptive multi-view fusion and incorporating a multi-head decoder for Gaussian primitive optimization to mitigate the limitations of uniform-weight fusion. Extensive experiments on regular and emotional datasets show UA-3DTalk outperforms state-of-the-art methods like DEGSTalk and EDTalk by 5.2% in E-FID for emotion alignment, 3.1% in SyncC for lip synchronization, and 0.015 in LPIPS for rendering quality. Project page: https://mrask999.github.io/UA-3DTalk

Subscribe for Updates

Copyright 2025 dijee Intelligence Ltd.   dijee Intelligence Ltd. is a private limited company registered in England and Wales at Media House, Sopers Road, Cuffley, Hertfordshire, EN6 4RY, UK registeration number 16808844