• Home
  • Uncategorized
  • XIMP: Cross Graph Inter-Message Passing for Molecular Property Prediction

arXiv:2601.19037v1 Announce Type: cross
Abstract: Accurate molecular property prediction is central to drug discovery, yet graph neural networks often underperform in data-scarce regimes and fail to surpass traditional fingerprints. We introduce cross-graph inter-message passing (XIMP), which performs message passing both within and across multiple related graph representations. For small molecules, we combine the molecular graph with scaffold-aware junction trees and pharmacophore-encoding extended reduced graphs, integrating complementary abstractions. While prior work is either limited to a single abstraction or non-iterative communication across graphs, XIMP supports an arbitrary number of abstractions and both direct and indirect communication between them in each layer. Across ten diverse molecular property prediction tasks, XIMP outperforms state-of-the-art baselines in most cases, leveraging interpretable abstractions as an inductive bias that guides learning toward established chemical concepts, enhancing generalization in low-data settings.

Subscribe for Updates

Copyright 2025 dijee Intelligence Ltd.   dijee Intelligence Ltd. is a private limited company registered in England and Wales at Media House, Sopers Road, Cuffley, Hertfordshire, EN6 4RY, UK registeration number 16808844